Loading...

Custom LLM Parameters

Configure advanced model parameters for fine-tuned AI responses and behavior control.

Tambo uses an LLM behind the scenes to process user messages. You can change what model Tambo uses, and while Tambo uses certain parameters by default when calling the LLM, you can override these parameters to customize behavior depending on your chosen provider.

Provider Support

Custom parameters are available for OpenAI-compatible providers. Other providers (OpenAI, Anthropic, etc.) are limited to common parameters for compatibility.

How Does It Work?

Custom LLM parameters allow you to override default model settings with provider-specific configurations. Parameters are stored per model, letting you optimize different models independently.

Example configuration:

  • temperature: 0.7
  • maxOutputTokens: 1000
  • topP: 0.9
  • presencePenalty: 0.1

Why Use Custom LLM Parameters?

  • Fine-tune output quality - Control randomness, length, and creativity
  • Optimize for use cases - Different parameters for creative writing vs. code generation
  • Provider compatibility - Support both standard and custom parameters
  • Model-specific tuning - Configure each model independently

Configuring Parameters in the Dashboard

All LLM parameters are configured through your project settings in the dashboard.

Step 1: Access Provider Settings

  1. Navigate to your project in the dashboard
  2. Go to SettingsLLM Providers
  3. Select your provider and model

Step 2: Add Parameters

The dashboard shows suggested parameters based on your selected model:

For Common Parameters:

  1. Under Custom LLM Parameters, you'll see suggested parameters like temperature, maxOutputTokens, topP, etc.
  2. Click + temperature (or any other parameter) to add it
  3. Enter the value (e.g., 0.7 for temperature)
  4. Click Save to apply the configuration

For Custom Parameters (OpenAI-Compatible Only):

  1. If you don't see the parameter you need in the suggestions, you can add custom parameters
  2. Click to add a parameter manually
  3. Enter the parameter name (e.g., max_tokens, logit_bias)
  4. Enter the value in the appropriate format (string, number, boolean, array, or object)
  5. Click Save to apply

Suggested Parameters

The dashboard automatically shows relevant parameter suggestions based on your selected provider and model. These suggestions include common parameters that work across all providers.

Example Configuration

Setting up a creative writing model:

  1. Select your provider and model
  2. Click + temperature → Enter 0.9
  3. Click + topP → Enter 0.95
  4. Click + presencePenalty → Enter 0.6
  5. Click + maxOutputTokens → Enter 2000
  6. Click Save

Basic Parameters

Common Parameters (All Providers)

These are the parameters supported by tambo and suggested for use across all LLM providers. For providers other than OpenAI-compatible, users can only use these common parameters - custom parameters are not available. These parameters are supported across all tambo providers:

ParameterTypeDescriptionRange/Example
temperaturenumberControls randomness in output. Lower values for deterministic responses, higher values for creative responses.0.0-0.3 (deterministic), 0.7-1.0 (creative)
maxOutputTokensnumberMaximum number of tokens to generate. Helps control response length and costs.100-4000 (varies by model)
maxRetriesnumberNumber of retry attempts for failed API calls.1-5
topPnumberNucleus sampling threshold. Alternative to temperature for controlling randomness.0.0-1.0
topKnumberTop-K sampling limit. Restricts sampling to top K most likely tokens.1-100
presencePenaltynumberPenalty for introducing new topics. Higher values encourage staying on topic.-2.0 to 2.0
frequencyPenaltynumberPenalty for token repetition. Higher values reduce repetitive text.-2.0 to 2.0
stopSequencesarrayArray of strings that stop generation when encountered.["\n", "###"]
seednumberRandom seed for deterministic sampling. Same seed + prompt = same output.Any integer
headersobjectCustom HTTP headers for requests.{"Authorization": "Bearer token"}

Parameter Behavior

While these parameters are supported across all tambo providers, tambo does not guarantee specific model behavior when using these parameters. Different models may interpret the same parameter values differently, and results can vary based on the model, prompt, and context. Always test parameter combinations with your specific use case.

Parameter Data Types

TypeDescriptionExamples
stringText values"stop", "You are a helpful assistant"
numberNumeric values0.7, 1000
booleanTrue/false valuestrue, false
arrayJSON arrays["\n", "###"], [1, 2, 3]
objectJSON objects{"key": "value"}, {"temperature": 0.5}

OpenAI-Compatible Providers

OpenAI-compatible providers support both suggested parameters (the common parameters above) and custom parameters for advanced use cases.

Suggested Parameters for OpenAI-Compatible

All common parameters listed above are available as suggestions for OpenAI-compatible providers.

Custom Parameters for OpenAI-Compatible

For full flexibility with OpenAI-compatible APIs, you can add any custom parameter supported by the provider. These parameters are configured through the tambo UI and passed directly to the OpenAI-compatible API.

Available Custom Parameters

These are examples of custom parameters that may be supported by OpenAI-compatible providers following OpenAI's API:

ParameterTypeDescription
max_tokensnumberAlternative to maxOutputTokens
logit_biasobjectModify token probabilities (e.g., {"1234": -100})
userstringEnd-user identifier for monitoring
suffixstringText to append after completion
logprobsnumberInclude log probabilities in response
echobooleanInclude prompt in completion
best_ofnumberGenerate multiple completions, return best

Custom Parameters Disclaimer

When adding custom parameters, results are not guaranteed. Different OpenAI-compatible providers may interpret or support these parameters differently. The examples above are suggestions only—always verify with your specific provider's documentation and test thoroughly before production use.

Advanced Usage Patterns

Creative Writing Model

  • temperature: 0.9 (high creativity)
  • topP: 0.95 (diverse word choices)
  • presencePenalty: 0.6 (encourage new topics)
  • maxOutputTokens: 2000 (longer responses)

Code Generation Model

  • temperature: 0.2 (low randomness)
  • topP: 0.1 (focused word choices)
  • frequencyPenalty: 0.3 (reduce repetition)
  • stopSequences: ["\n\n", "###"] (stop at logical breaks)

Deterministic Analysis Model

  • temperature: 0.0 (completely deterministic)
  • seed: 42 (reproducible results)
  • maxOutputTokens: 500 (controlled length)

Custom OpenAI-Compatible Setup

  • temperature: 0.7
  • max_tokens: 1000
  • logit_bias: {"50256": -100} (modify token probabilities)
  • user: "analytics-user" (for monitoring)
  • presence_penalty: 0.1

Integration with Projects

Parameters are configured per project and stored with the following hierarchy:

  • Provider (e.g., "openai", "openai-compatible")
  • Model (e.g., "gpt-4", "claude-3-sonnet", "custom-model-v1")
  • Parameters (key-value configuration)

This allows different projects to have different parameter sets for the same model, enabling fine-tuned optimization across use cases.

Best Practices

  • Start with defaults: Begin with suggested parameters before adding custom ones
  • Test incrementally: Change one parameter at a time to understand effects
  • Document configurations: Note which parameter sets work best for specific use cases
  • Monitor usage: Higher token limits and retries can increase API costs
  • Use custom parameters sparingly: Only for OpenAI-compatible providers when needed

Troubleshooting

Parameters not applying?

  • Verify you're using an OpenAI-compatible provider for custom parameters
  • Check parameter syntax matches the expected type (string/number/boolean/array/object)

Model not responding as expected?

  • Lower temperature values (0.0-0.3) for more deterministic responses
  • Adjust topP and topK for fine-grained control over randomness
  • Use stopSequences to prevent rambling responses

API errors with custom parameters?

  • Ensure custom parameter names match the provider's API documentation
  • Verify parameter values are within acceptable ranges
  • Check that the provider supports the custom parameter you're trying to use